Realizability Models Separating Various Fan Theorems

نویسندگان

  • Robert S. Lubarsky
  • Michael Rathjen
چکیده

We develop a realizability model in which the realizers are the reals not just Turing computable in a fixed real but rather the reals in a countable ideal of Turing degrees. This is then applied to prove several separation results involving variants of the Fan Theorem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separating the Fan Theorem and Its Weakenings II

Varieties of the Fan Theorem have recently been developed in reverse constructive mathematics, corresponding to different continuity principles. They form a natural implicational hierarchy. Earlier work showed all of these implications to be strict. Here we re-prove one of the strictness results, using very different arguments. The technique used is a mixture of realizability, forcing in the gu...

متن کامل

Canonical Effective Subalgebras of Classical Algebras as Constructive Metric Completions

We prove general theorems about unique existence of effective subalgebras of classical algebras. The theorems are consequences of standard facts about completions of metric spaces within the framework of constructive mathematics, suitably interpreted in realizability models. We work with general realizability models rather than with a particular model of computation. Consequently, all the resul...

متن کامل

Kripke Semantics for Dependent Type Theory and Realizability Interpretations

Constructive reasoning has played an increasingly important role in the development of provably correct software. Both typed and type-free frameworks stemming from ideas of Heyting, Kleene, and Curry have been developed for extracting computations from constructive specifications. These include Realizability, and Theories based on the Curry-Howard isomorphism. Realizability – in its various typ...

متن کامل

Normalization by realizability also evaluates

For those of us that generally live in the world of syntax, semantic proof techniques such as realizability or logical relations/parametricity sometimes feel like magic. Why do they work? At which point in the proof is “the real work” done? Bernardy and Lasson [4] express realizability and parametricity models as syntactic models – but the abstraction/adequacy theorems are still explained as me...

متن کامل

Universality theorems for configuration spaces of planar linkages

We prove realizability theorems for vector-valued polynomial mappings, real-algebraic sets and compact smooth manifolds by moduli spaces of planar linkages. We also establish a relation between universality theorems for moduli spaces of mechanical linkages and projective arrangements.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013